Monte Verita, 2011

Physiological risk factors of Severe Mountain Sickness: a prospective cohort study.

> J.-P. Richalet, P. Larmignat, E. Poitrine, M. Letournel, F. Canouï-Poitrine

Hôpital Avicenne, ARPE, Laboratoire EA2363 « Réponses cellulaires et fonctionnelles à l'hypoxie » Bobigny, Université Paris 13 Hôpital Henri-Mondor, Laboratoire d'Investigations Cliniques, Créteil, Université Paris Est

Population concerned

– Trekkers, alpinists

Tourists (cultural trips)

- Workers
 - Ski resorts, cable cars, etc.
 - Astronomers, engineers (observatories)
 - Mine workers, oil prospecting

AMS – peripheral edema

High Altitude Cerebral Edema

Nepal. D+24

Nepal. D+3

Pathophysiology of High Altitude related diseases

Chemoreceptors and ventilatory response to hypoxia: the principle of the hypoxia exercise test

Hypoxia exercise test: FIO_2 =11.5%. power output \approx 30% VO₂max SL

Hypoxia exercise test

Hypoxia exercise test

Response to hypoxia at exercise is insensitive to altitude (3000 - 4800m) and power output (20 - 40% MAP)

Patient with Holmes-Adie syndrome

Normal subject

Richalet et al. Clin Auton Res, 2010

Population studied

3994 subjects (60% M. 40% F) from 1992 to 2008 Before a stay at high altitude > 4000m with overnight > 3500m

Alpinists	n = 395
Trekkers	n = 2534
Tourists	n = 457
Workers	n = 607

Among them, the feed back information about the events that occurred during their stay at high altitude was obtained in 1326 subjects (mean response rate of 33.2%)

Variation of response to hypoxia with age

(n=3994)

Stability of parameters with time, from 1992 to 2008 (n=3994)

က $\Delta VE/\Delta SaE_{2}$ (L/min/kg) 0 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Statistical analysis

- Subjects are classified into two categories following the occurrence or not of Severe High Altitude Related Disease (SHARD):
 - Severe, incapacitating AMS / HAPE / HACE = SHARD +
 - No or moderate AMS = SHARD -
- Comparison between the two groups SHARD+ / SHARD-:
 - t-test / Wilcoxon-Mann-Whitney / Pearson Chi2 / Fisher
 - Odds Ratio associated to each risk factor estimated by logistic regression
 - Variables with p<0.15 in univariate analysis are included in a model of multivariate logistic regression
 - Significant interaction between ∆Sae and acetazolamide use therefore stratified analysis for acetazolamide

Prevalence of High Altitude diseases

Among the 1326 respondents to the questionnaire,

- 318 suffered from a severe manifestation (SHARD +), i.e. 24%

- 1008 did not suffer from major symptoms (SHARD -). i.e. 76%

	1			•	4		
			$\mathbf{V2}$	ria			
V I		IЧ	VQ				

Variable	SHARD +	SHARD -	Р	OR
Age	42.6 (12.8)	45.3 (14.1)	0.30	0.91 (0.75-1.09)
Sex (F)	47.5 %	38.8 %	0.24	1.24 (0.87-1.77)
Hist. SHARD	41.5 %	10.2 %	<0.001	7.36 (4.55 - 11.89)
Migraine	19.2 %	11.0 %	0.043	1.62 (1.02-2.57)
Trained	39 %	29.9 %	0.036	1.73 (1.04-2.88)
Altitude gain > 400m/night	49.4 %	29.6 %	0.035	2.24 (1.06-4.76)
Δ Sae. %	26.8 (5.5)	22.2 (5.0)	<0.001	1.86 (1.50-2.30)
HCRE. b/min/%	0.72 (0.26)	0.80 (0.30)	0.012	0.77 (0.63-0.94)
HVRE. I/min/kg	0.49 (0.24)	0.78 (0.34)	<0.001	0.30 (0.23-0.40)

Interactions with treatments

Treatment	OD (95% CI)	Р
Paracetamol (curative)	3.18 (2.03-4.98)	< 0.001
Aspirin (curative)	3.18 (2.14-4.72)	<0.001
Acetazolamide (preventive)	0.27 (0.19-0.43)	<0.001

Multivariate analysis

Influence of training status on responses to hypoxia

variable	Untrained	Endurance Trained	Р
	n=2700	n=1300	
Age	45.1±14.3	40.4 ± 12.6	< 0.001
BMI	23.1±3.1	22.6±2.4	< 0.001
Systolic AP	129.8±15.0	129.4±12.8	ns
Diastolic AP	81.6±9.8	80.9±9.1	0.038
VO2max	41.8±9.0	52.2±10.5	< 0.001
SaO ₂ exerc. hypoxia	73.2±5.5	70.8±5.9	< 0.001
HR exerc. hypoxia	133.4±13.7	129.8±11.5	< 0.001
VE exerc. hypoxia	38.6±9.0	41.0±10.1	< 0.001
ΔSaO_2 rest	11.1±3.5	11.6±3.6	< 0.001
ΔSaO_2 exercise	23.1±5.2	25.3±5.8	< 0.001
HCR exercise	0.74±0.30	0.82±0.27	< 0.001
HVR exercise	0.68±0.32	0.73±0.32	< 0.001

Multivariate analysis: characteristics of subjects according to SHARD and acetazolamide use

No acetazolamide	Acetazolamide use		
multivariate OR (95% CI)*	р	multivariate OR (95% CI)*	р

Previous migraine	2.28 (1.28-4.07) <0.001	1.23 (0.62-2.45) 0.64
Previous SHARD	12.82 (6.95-23.66)<0.001	5.02 (2.41-10.44) < 0.001
Regular endurance activity	1.57 (1.00-2.46) 0.016	1.38 (0.78-2.43) 0.21
Rapid ascent (>400m/day)	5.89 (3.78-9.16) <0.001	2.26 (1.35-3.81) 0.001
Δ Sae, OR for 1 SD increase	2.50 (1.52-4.11) <0.001	1.63 (0.81-3.27) 0.024
HVRe, OR for 1 SD decrease	6.68 (3.83-11.63) <0.001	3.89 (1.74-8.73) 0.024

*Logistic regression model adjusted for all the variables listed in the table

Geography = risk factor ? (Univariate analysis)

Geography = risk factor ? (Multivariate analysis)

Discrimination ability of hypoxic exercise test (ASae and HVRe)

Comparison between c-statistic indices of multivariable models predicting SHARD.

No acetazolamide use Acetazolamide use

Multivariable model adjusted for sex,		c-statistic p-value *		c-statistic p-value '		
and rapid ascent	= M1	0.7923	-	0.7006	-	
M1+ ∆Sae	= M2	0.8654	<0.001*	0.7632	0.001*	
M1+ HVRe	= M3	0.8924	<0.001	0.7926	<0.001	
M1 + ∆Sae + HVR	e = M4	0.9043	<0.001	0.7995	0.33	

C-statistic indices were derived from logistic regression model. The c-statistic indices were compared using the Delong test (DeLong et al., Biometrics, 1988).

Factors *favoring* the occurrence of SHARD (multivariate analysis):

- History of migraine
- History of severe AMS or HAPE / HACE during preceding altitude exposures
- Rapid ascent (> 400 m mean altitude gain / night)
- Regular endurance training
- Large desaturation at exercise during the hypoxia exercise test (ΔSaE)

Factors *protecting* against the occurrence of SHARD (multivariate analysis):

- High ventilatory response to hypoxia at exercise
- High cardiac response to hypoxia at exercise
- Prevention by acetazolamide

Factors *not related* to the occurrence of SHARD (multivariate analysis):

- Sex, age, height, body weight, BMI
- Tobacco, atopia, snoring
- Familial history of thrombo-embolic, cardiac, pulmonary events
- Mountaineering experience
- Hypothyroidism, depression, cranial trauma with lack of consciousness
- Systemic hypertension

Conclusions

- 1. There is an individual susceptibility to severe high altitude related diseases AMS / HAPE / HACE
- 2. Speed of altitude gain is a crucial factor
- 3. Measurement of HVR at rest has no predictive value
- 4. Evaluation of response to hypoxia at exercise is useful to determine individual risk factors.
- 5. Prevention through adequate information is an essential part of the Altitude Medicine Consultation.

Perspectives

- 1. Search for specific risk factors of HAPE / HACE (however, large number of subjects difficult to obtain)
- 2. Search for genetic determinants : several studies done and on progress but large numbers are necessary
- 3. Develop this test for other diseases: coronaropathies. lung disorders, flight and O_2 , etc.